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Density fluctuations in a model for vibrated granular media
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This paper presents the study of density fluctuations in a model for vibrated granular media. Their micro-
scopic origin is shown to be linked to the microscopic disorder in grains packing. Varying vibrations amplitude
and duration, several regimes are found for density relaxation. Its power spectrum is well described by power
laws. @S1063-651X~99!16905-8#

PACS number~s!: 81.05.Rm, 05.40.2a, 45.05.1x, 81.20.Ev
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I. INTRODUCTION

The problem of density fluctuations in vibrated granu
media has large importance in many practical applicati
and opens questions from more fundamental points of v
@1,2#. Strong fluctuations are commonly observed in the
materials for instance in the measures of contact forces@3#,
of stress in sheared@4# or flowing @5# or compressed@6#
granular media, during density compaction@7–9#, in the den-
sity of granular systems flowing during the discharge fro
bins or pipes@10–12#, and actually their strength makes
systematic study a nontrivial task. Here we try to show h
strong fluctuations in ‘‘dynamical’’ processes, as dens
compaction under taping, are related to microscopic mec
nisms as geometric disorder and frustration present in gra
lar packs.

Several models have been proposed to describe the
namics of a dense granular material as nonlinear ma
equations@8,13–15# or Monte Carlo simulations which in
troduceab initio frustration due to the hard-core interactio
between the grains@16–18# ~see also@1#!. Recently a simple
microscopic model was introduced@19# to elucidate the role
that disorder in particle arrangements, typical of granu
media, plays in such systems. This model, which can
mapped into an Ising spin glass, is a lattice gas whose
ticles, subjected to gravity and vibrations, have to sati
during their motion the local geometrical constraints due
the nontrivial neighbors arrangement. Interestingly it sho
highly nontrivial dynamic features, as logarithmic compa
tion or segregation@19#, in strict correspondences with ex
perimental facts about granular assemblies. In this con
we face the problem of a systematic analysis of density fl
tuations during tapping which may be compared with exp
mental observations of vibrated dry granular media in
low amplitude regime. The model allows to sketch a mic
scopic detailed picture of the phenomenon and to pre
several characteristic properties to be experimentally v
fied.

This analysis shows that density relaxation presents fl
tuations of the same order of magnitude of the measu
mean values. In particular the power spectrum of the den
relaxations,S(v), presents several regions as a function
the frequency.S(v) goes to a constant at very small freque
PRE 591063-651X/99/59~6!/6830~8!/$15.00
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cies; then an intermediate region with a power law behav
is found; and, at even higher frequencies, we observe a m
usual behavior which corresponds to short time exponen
like relaxations. The intermediate region may be a wide n
trivial portion of the spectrum, but it seems to always pres
a finite upper cut off. Power law behaviors have been ty
cally found in granular media@1,2#, and our general result
seem well consistent with the known experimental data
density compaction@7–9#.

II. LATTICE MODEL

As stated, the model introduced in@19#, which we study
here, was conceived to take into account the effects of
order and geometrical frustration in particle rearrangeme
typically present in granular media. It is essentially a latt
gas whose particles have to fulfill local geometrical co
straints, which, in the present version, are ‘‘quenched’’
the lattice~see@20# for a model without quenched disorde
where we expect behaviors similar to those discussed he!.
For the sake of clarity we briefly summarize its main fe
tures. The model consists of a system of particles diffus
on a square lattice~a three-dimensional version of the mod
is studied in Ref.@21#!. On sitei we setni51 if a particle is
present and 0 otherwise. Moreover, the particles are cha
terized by an internal degree of freedomSi561 ~an Ising
spin!, describing local quantities, as particles shape orien
tion, which actually experience geometrical frustration@19#.
Si51 might correspond to a rodlike shaped grain who
elongation is directed along one lattice direction andSi5
21 to a grain oriented in the other direction.

In real granular media, grains are typically frustrated
their motion and packing, by several microscopic mec
nisms as, for instance, geometrical effects due to hard c
repulsion with their neighbors or friction phenomena. Mor
over, a high degree of disorder is typically present in t
packs. In the present model we describe these facts by
signing fixed random numbers,e i j 561, to the bonds of the
lattice. The bond variablese i j schematically model the gen
eral effects of the disorder of the environment and geome
frustration present in granular systems due to spatial m
match of grains shapes and arrangements disregarding
actual mechanisms from which they arise. Our results
6830 ©1999 The American Physical Society
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PRE 59 6831DENSITY FLUCTUATIONS IN A MODEL FOR . . .
linked to these general aspects of the model and are es
tially independent of their specific realization~see also@19–
21#!. In the present model particles are subjected to the c
straint to fit the local ‘‘geometrical’’ arrangement imposin
that whenever two (i and j ) are neighboring, their ‘‘orienta-
tion’’ must satisfy the mutual and the environmental ge
metrical disposition according the following relatio
e i j SiSj51. Particles react to the effects of the ‘‘quenche
frustration imposed by the choice of thee i j , which leads to
the unavoidable presence of empty sites. It is possible to
a formulation of such a model@22,23,19# in terms of an
Edwards-Anderson Ising spin glasslike Hamiltonian@24#.

We are interested in studying such a system when un
going a dynamical processes in the presence of ‘‘exte
vibrations’’ and ‘‘gravity.’’ So we define a dynamics base
on the random diffusion of particles on a square latt
whose diagonal is parallel to the direction of gravity, in su
a way as to preserve the above ‘‘geometrical’’ constrain
When just gravity is present, particles may just move dow
while in the presence of shaking they can also be pushed
Thus, the particles attempt a move upwards with probab
P2 and downward withP1(P11P251). The move is made
only if the internal degrees of freedom satisfy the above c
straint and if the place is empty. Similarly, their orientati
Si ~the ‘‘spin’’ ! may randomly flip if there is no violation o
constraints, and does not flip otherwise. In the absenc
vibrations, the presence of gravity imposesP250. When
vibrations are switched on,P2 becomes finite. The single
parameter that controls the dynamics and describes the v
tions is the ratiox(t)5P2(t)/P1(t). As described in more
detail in Refs.@19–21#, the parameterx is linked to an ‘‘ef-
fective temperature,’’b21, of the systemb52 ln(x), and is
thus related to the adimensional experimental shaking am
tudeG ~see@1#!.

We adopt, for our Monte Carlo simulations, a 45° tilte
lattice with periodic boundary conditions along the horizo
tal axis~respect to gravity! and rigid walls at bottom and top
Further results about three-dimensional systems@21# show
the generality of our finding in two dimensions. After fixin
the random quenchede i j on the bonds, a random initial pa
ticle configuration is prepared by randomly pouring partic
into the box from its top and then letting them fall dow
with the described dynamics (P250).

III. MONTE CARLO RESULTS

Our aim is the study of density fluctuations during co
paction in the presence of vibrations. As in real experime
we consider dynamical processes consisting of sequenc
taps. A ‘‘tap’’ in a real experiment is the shaking of a co
tainer filled with grains by vibrations of given duration an
amplitude. In our Monte Carlo simulations each tap is d
fined by giving a finite value to the dynamic parameterx.
Specifically we fixx(t)5x05const for tP@0,t# and later
x050. With this procedure the systems attains, after ‘‘sh
ing,’’ a final ‘‘static’’ configuration that is defined by the
criterion that during a fixed timet r nothing changes any
longer. We fixed in our simulationt r5330, much longer
than any other characteristic time in the system~at x050).
Time t is measured in such a way that one unit correspo
to one single average update of all particles and spins of
en-
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lattice. We interprett as the duration of the vibrations andx0
as their amplitude. After each tap we measure the static b
density of the systemr(tn)(tn is the nth tap number!, i.e.,
the density in the lower 25% of the box. We repeat t
tapping sequence for different values of the tap amplitudex0
and fixed durationt.

For this Monte Carlo experiment, which requires ve
long computer time, we considered a system of size 30360.
Our data are averaged over 640 differente i j configurations to
produce highly reliable data. The drawback was that we w
unable to make simulations for very long tapping sequenc
we generally fix to 100 the total number of taps in a s
quence. However, as explained below, we also made
runs with less good statistics but longer time series~one or-
der of magnitude more! to verify that our results are valid
~see also Fig. 6!. A test of size effects was also performe
where larger systems were studied~up to size of 1003200,
see also@19#!. This analysis allows us to conclude that o
results are very robust to size effects. However, the phen
enon of density relaxation is logarithmic intn ; thus, gener-
ally speaking, we cannot exclude that our analysis~with tn
up to 103) is not valid in the truly asymptotic time regime

A. Density relaxation under tapping

To describe experimental observations about grain den
compaction under a sequence of taps an inverse logarith
law was actually proposed in Ref.@7#. In the present model
data of density relaxation proved to satisfy the same
@19#. In the inset of Fig. 1 we show our Monte Carlo data f
the density relaxation during a sequence of taps for sev
values of the vibration amplitudex0. The superimposed fits
are from the logarithmic law presented in@7#, cast in the
following form:

FIG. 1. Power spectrum,Sr(v), of MC data for density relax-
ation as a function of the frequency numberv, for sequences of
taps of vibration amplitudex052.031024, 5.031024, 2.0
31023, 5.031023, 1.031022,2.031022,0.1 ~from bottom to
top! and durationt537. The continuous curves are power law fi
described in the text@Eq. ~7!# whose parameters are shown in Fi
5. Inset: Static bulk densityr(tn) from the same MC data describe
~from bottom to top! above as a function of tap numbertn . The
continuous curves are inverse logarithmic fits, given in the text@Eq.
~1!#, proposed to interpolate experimental data, whose parame
are given in Fig. 2.
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@r~ tn!2r`#/~r02r`!5 ln~c!/ ln~ tn /t01c!. ~1!

Here r` is the final asymptotic density andr0 its initial
measured value. Notice that one can fit the very long ti
data of density compaction under tapping also with
stretched exponential four parameter function, which, at h
x0 values performs as well as the above inverse logarit
However, with the logarithm one is able to fit the full set
data~not just long times! for all the explored values ofx0.

We present here results for the fits of our data with Eq.~1!
on which we imposed the constraint that the fit functi
passes attn50 throughr050.739, i.e., the measured stat
initial state density of our system obtained from the prepa
random starting configuration~in which the particles were
poured into the box according to the rules given above!. We
found that for the sequences of our MC taps of fixed durat
t and amplitudex0, the parameterc of Eq. ~1! is approxi-
mately equal toc51.3 and independent ofx0 in the explored
amplitude x0P@2.031024,0.1# and duration ranget
P@0.037,370#. The phenomenological parameterc may be
linked to a second typical time, other thant0, in the system.

The two parametersr` andt0 obtained by fitting with Eq.
~1! our MC data for sequences with fixed tapt537 and tap
‘‘amplitude’’ x0P@2.031024,1.031021#, are reported in
Fig. 2. Consistent with what was found experimentally
Ref. @7#, and in agreement with some previous results@19#,
the characteristic timet0 diverges when the vibrations am
plitude goes to zero with a power law inx0 ~at low vibration
amplitudes and at fixedt537),

t0~x0!5~x0 /X!2g. ~2!

In the very low amplitude region the exponent isg50.9 and
X50.4, but the data show a crossover tog50.6 and X
51.8 abovex2* '1022. As a function of the effective tem
perature,b21, t0 should then follow an Arrhenius law. Th
other parameterr` shows a more complex behavior withx0.
Approximately three rough regimes seem to appear cha
terized by two typical amplitude values:x2* and x1* '1023.
A possible approximate fit in these regions of intermedi
values ofx0 is

FIG. 2. Fit parametersr` andt0 for density relaxation~data of
Fig. 1!, from the inverse logarithmic law, given in the text, Eq.~1!,
as a function of the tap vibration amplitudex0. The behavior ofr`

shows the appearance of three approximate rough regions sepa
by x1* ;1023 andx2* ;1022. The characteristic time of logarithmi
relaxations,t0(x0), can be described by two power laws.
e
a
h
.

d

n

c-

e

r`~x0!5r 11r 0log~x0!, ~3!

with r 150.79, r 050.003 belowx1* , r 150.75, r 050.001
betweenx1* andx2* , andr 150.77, r 050.002 abovex2* .

We also analyzed the dependence of these laws and
rameters by changing the tap ‘‘duration’’t. We simulated
tapping sequences of 200 taps with fixedx050.0005 andt
50.037,0.37,3.7,37,370. The data from these sequences
eraged over 320e i j configurations, are depicted in Fig. 3. W
find again the logarithmic behavior given in Eq.~1!, in which
approximatelyc51.3. The other two parameters,r` andt0,
are given in Fig. 4 as a function oft. As above we find that
they are well described by power laws,

t0~t!5~t/A!2g8, ~4!

with A51.13104 andg850.9 in agreement with the previ
ous value forg of Eq. ~2! in the low vibration amplitudes
region. As expected the characteristic timet0 diverges when
eitherx0→0 or t→0. For small vibration amplitudes or du
rations, the asymptotic densityr` increases withx0 and t.
As above, we fit the data approximately with

r`~t!5r 31r 2log~t!, ~5!

with r 350.75, r 250.003.

B. Power spectrum of density relaxation

A further characterization of our time series for dens
relaxation is obtained by studying their spectral propert
and fluctuations. As usual, we define the power spectr
Sr(v) of our density sequencesr(tn) ~with tnP$0,T%, where
T is the total number of taps, which in our case is typica
T5100,1000), as

tedFIG. 3. Static bulk densityr(tn) from our MC data as a function
of tap numbertn , for tapping sequences of fixed vibration amp
tude x055.031024 and durationt50.037,0.37,3.7,37,370~from
bottom to top!. The continuous curves are the quoted logarithm
fits, whose parameters are shown in Fig. 4. In the inset we show
corresponding power spectrum~analogous to the spectrum of th
data of Fig. 1! with the power law fits described in the text whos
parameters are shown in Fig. 4.
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Sr~v!5U1T (
tn51,T

r~ tn!expS 2p i

T
tnv DU2

, ~6!

wherevP$0,1, . . . ,T/2% is an integer.
Being that the density relaxation is approximately log

rithmic, it is problematic to decide where one enters
asymptotic ‘‘stationary’’ regime. We thus study the spect
properties of the full relaxation to compare it with expe
mental data.

The typical appearance of the spectrumSr(v) as a func-
tion of v is shown in Fig. 1 for our series of taps of fixe
durationt537 and the quoted values of ‘‘amplitudes’’x0,
described at the beginning of Sec. III A. We approximat
find the following regions: a saturation to a constantSr(v)
;S(0), as a‘‘white noise’’ behavior, at very small frequen
cies; then up to a frequencyv1 a power law with an even
tually nontrivial exponentj<1, Sr(v);v22j; and, for high
frequencies, a more usual behavior corresponding to s
time exponential relaxations. Interesting is the behavior
low vibration amplitude. Actually whenx0→0, we find also
belowv1 that j51. So a frequency region is present who
extensions are larger the smallerx0, where trivial power laws
are observed, corresponding, as stated, to a short
exponential-like behavior. Moreover, the portion of the sp
trum with j<1 always has a finite upper cutoffv1, above
which we findj51.

The spectrum from our MC density series~for the same
amplitude rangex0P@2.031024,0.1# and durationt537 re-
ported above! is depicted in Fig. 1. Our data may be gene
ally well fitted by power laws as the following:

Sr~v!5S0FK2cosS 2pv

T D G2j

. ~7!

FIG. 4. Lower figures: fit parameters of logarithmic law,r` and
t0, for density relaxation in the sequences of taps shown in Fig.
fixed amplitude x055.031024 and duration t
50.037,0.37,3.7,37,370, as a function oft. Upper figures: fit pa-
rametersS0 ,v0(j.1), for power law density spectrumSr(v) in
the low frequencies region, as a function of the frequency num
v, for the same sequences described above. These behavio
similar to those found for the other kind of tap sequences~fixed
durationt and varying amplitudex0) shown in Fig. 1.
-
e
l

rt
t

e
-

-

This law, whenj51, is the spectrum, via discrete Fouri
transform, of a standard exponential function.

For our fits we divided the data in two frequency region
Above a frequencyv1;T/4 ~actuallyv1 is a function ofx0)
we always findj51. This suggests that at very small ta
number density compaction follows a usual exponential-l
behavior as found in the model of Ref.@17#. The parameters
S0 andK21 of the fit with Eq.~7! of MC data in the region
v.v1, are reported in the top row of Fig. 5. We find th
abovex2* they are almost independent ofx0.

The behavior withj51, at low vibration amplitude, ex-
tends over the whole frequency region we reached, a
abovev1. However, the scenario changes above a vibrati
amplitude approximately equal tox1* , where a low fre-
quency portion of the spectrum appears in which the ex
nent j is well below 1. The fit of this part of the spectrum
belowv1 is still done with Eq.~7!, and the fit parameters o
MC data are depicted in the bottom part of Fig. 5. The o
servations of the previous section about the power law
havior oft0 as a function ofx0 suggest an analogous beha
ior for the characteristic frequencyv0[(K21)1/2 of Eq. ~7!.
We find two regimes as a function ofx0, approximately
separated, as above, by the valuex2* . Below x2* ,

v0~x0!2[~K21!5~x0 /Y!a, ~8!

with a51.6 andY50.4, and, abovex2* K21 is approxi-
mately constant (K21;1.531023). The exponentj is
equal to 1 up tox1* and then apparently decreases, as sho
in Fig. 5.

Also S0 has approximately a power law behavior divide
in two regions separated by the same valuex2* ,

S0~x0!5~x0 /Z!d, ~9!

whered50.9 andZ50.41 belowx2* andS0;0.01 constant
above.

of

er
are

FIG. 5. Lower figures: fit parametersS0 ,v0 ,j of the density
spectrumSr(v) in the low frequencies region (v,v15T/4, where
T5100 is the total number of taps in the sequences!, as a function
of the vibration amplitudex0 at fixedt537 (t is the duration of a
single tap! for the same data shown in Fig. 1. Superimposed cur
are the power law fit described in the text. Upper figures: fit para
etersS08 andK821 for Sr(v) in the frequencies zone abovev1.
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We tested that our general results are not affected by
duration of our time seriesT5100, by recording the sam
behaviors for a longer tap sequence withT51000 but lower
statistics. The findings, reported in the inset in the bottom
Fig. 6, confirm our previous results.

These general results are consistent with the experime
data known to us. To compare our results with experime
we show in the top inset of Fig. 6 the spectrumSr(v) from
experimental measurements made by Knightet al. @7#. The
experimental data of Knightet al. on grain density compac
tion concern the measure taken at the bottom of a shaken
for G51.4,2.3,2.7, whereG is the ratio of the peak accelera
tion of a tap,a, to g59.81 m/s2, the gravitational accelera
tion (G5a/g). To show the direct correspondence betwe
our MC data and experimental data, we report in the m
frame of Fig. 6~as a single picture! the spectrum from our
series at different vibration amplitudes~shown in Fig. 1! and
those from the measurements by Knightet al. @7# both res-
caled according Eq.~7!. Each data set is rescaled with i
value of the fit parameterj measured in the low frequenc
region ~the values ofj50.87,0.77,0.79 for the quoted ex
perimental data are in the same range of our MC!. The scal-
ing seems to work well over several orders of magnitude
the rescaled variable, except for the high frequency datav
.v1), where both experimental measures and our MC ha
as explained above, a different exponentj51.

We repeated the same analysis for the sequences with

FIG. 6. Inset ~top right!: density relaxation power spectrum
Sr(v) from experimental data recorded by Knightet al. ~see text!
for several values of the adimensional tap amplitudeG (G
51.4,2.3,2.7, from bottom to top!. G5a/g is the ratio of the peak
acceleration,a, of a tap tog59.81 m/s2, the gravitational accel-
eration. Continuous curves are fits with the power law, Eq.~7!,
quoted in the text, whose exponent is respectivelyj
50.87,0.77,0.79. Main frame: the above experimental data f
Knight et al. ~crosses! and our MC data shown in Fig. 1~circles!
about power spectrum of density relaxation,Sr(v), as a function of
the frequency numberv, rescaled according to the function given
the text, Eq.~7!. Inset~bottom-left!: Power spectrum of MC data o
density relaxationSr(v) as a function of the frequency numberv,
for sequences of taps with vibrations of amplitudex055.0
31023,1.031022,1.031021 and durationt537. These MC se-
quences are depicted to show the consistency with the results
the shorter sequences~one order of magnitude less! with better
statistic shown in Fig. 1.
e

f

tal
s,

ox

n
in

f

e,

tap

duration t50.037,0.37,3.7,37,370 and fixed amplitudex0
50.0005. The picture outlined above doesn’t change and
spectrum, described by Eq.~7!, is reported in the inset of Fig
3. The parameters defined in Eq.~7!, depicted in Fig. 4,
again seem to follow power laws,

v0~t![K215~t/C!a8, ~10!

wherea8.0.5 andC.2.13109, and

S0~t!5~t/D !d8, ~11!

whered8.1.4 andD.3.63102. In the present case, work
ing at very low amplitude and small durations of the taps,
always find that the exponentj is approximately equal to 1
At low x0 we are unable to enter the zone of the pow
spectrum withj,1.

As a consequence of the above results, whenx0→0 or
t→0, we expect that the power spectrumSr(v) obeys the
following trivial scaling relation with vibration amplitudex0
~or analogously witht):

Sr~v;x0!5x0
d f T~v/x0

a!, ~12!

wheref T(y) is a universal scaling function. This equation
however, not expected to be valid in the low frequency
gions wherej may no longer be equal to 1.

C. Density fluctuations

We pass now to a brief discussion of higher moments
density series measurements. Specifically we analyze
relative density fluctuationss(tn) around the measured mea
value r(tn) and the fourth order cumulantg(tn) to extract
informations about its distribution. We study the quantitiess
andg defined as

s~ tn!5F ^r2~ tn!&2^r~ tn!&2

^r~ tn!&2 G 1/2

, ~13!

g~ tn!5
1

2 F32
^r4~ tn!&

^r2~ tn!&2G , ~14!

where the averages run over the quoted 640 different rea
tions.

Like the densityr, s also follows an inverse logarithmic
law similar to the one given in Eq.~1!,

s~ tn!5s`2Ds/ ln~ tn /ts1c!, ~15!

wherec is still fixed to 1.3. Our results are reported in Fig.
for the same series of values ofx0 described above in Sec. II
A with t537. We note that the fluctuation are of the sam
order of the density itself (s;1) and that they are stronge
and more persistent at lower vibration amplitudes. The tim
ts of Eq. ~15! are, within a 10% error, equal to those foun
for t0 in Eq. ~1!. Ds;0.2860.02 is approximately constan
Also the study ofs` , depicted in Fig. 7, hardly shows th
three regions found for the parameters of Eq.~1!. This may
be due to the poorer data quality we obtain for higher m
ments.

m

m
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The quality of our data is even poorer forg, which is
depicted in Fig. 8 for the same series of values ofx0 de-
scribed above. Note the fine scale of the ordinate,g
P@0.999 61,0.999 78#: this implies that the fourth momen
of the distribution of measures is essentially equal to
second. Also in this case a fit with Eq.~15! is reasonable, bu
the fit parameters fluctuate much more. However, the c
acteristic times of the logarithmic fits show the same beh
ior found above fort0 andts @actually the simple moment
r(tn), r2(tn) and r4(tn) have all the same time scales#.
These fit parameters are shown in Fig. 9.

All these findings may be resumed by stating that
mean square fluctuations observed in the measure of de
are typically of the same order of magnitude of the aver
itself. The relative fluctuations are stronger at lower vibrat
amplitude. The fourth moment is of the same order of
second. Moreover, their dependence on the tap numbetn
follows the same inverse logarithmic law given, for the de
sity, in Eq. ~1!.

D. Density correlation function

We have also recorded the density time correlation fu
tion, C(tn), defined as

FIG. 7. Relative density fluctuations from MC data,s(tn), as a
function of the logarithm of the tap numbertn , for the same tapping
series of Fig. 1 with vibrations of amplitudex052.031024,5.0
31024, 2.031023,5.031023, 1.031022,2.031022 ~from top to
bottom! and durationt537. The continuous curves are fits with th
inverse logarithmic function described in the text. Inset: the e
mated asymptotic value,s` , for density fluctuationss(tn), as
function of the vibration amplitudex0.
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C~ tn!5
^r~ tn!r~ t1!&2^r~ t1!&2

^r2~ t1!&2^r~ t1!&2
. ~16!

As above, the time correlation functionC(tn) has an inverse
logarithmic behavior given, for instance, in Eq.~1!, again
with c51.3. In this case, of course, we have the additio
constraint that the curves have to pass through 1 attn51.
Our results for the quoted values ofx0 are reported in Fig.
10.

Also now the times of this logarithmic relaxation ar
within a 10%, consistent with the corresponding valu
found for t0 in Eq. ~1!. In the inset of Fig. 10 we plot the
asymptotic estimated valuec` of the correlation function
C(tn) for the studied values ofx0 @c`5 limtn→`C(tn)#. We

just note thatc` is well above zero in the full interval ofx0
studied.

Consistent with the previous results, the power spectr
SC(v) of the correlation functionC(tn) shows a behavior
very similar to that described above in some detail forSr(v)
@analogously fors(tn) andg(tn)]. Equation~7! seems to be
satisfied and its parameters approximately follow Eqs.~8!
and~9! as a function of vibration amplitudex0. The statistics
for SC(tn) is worse than that forSr , and the data less clea

i-

FIG. 8. Fourth order cumulant of density fluctuations from M
data,g(tn), as a function of the logarithm of the tap numbertn , for
the same tapping series of Fig. 1 with vibrations of amplitudex0

52.031024, 5.031024, 2.031023, 5.031023, 1.031022, 2.0
31022 ~from bottom to top! and durationt537. The continuous
curves are inverse logarithmic fits.
FIG. 9. The parametersg` , Dg, andtg from the logarithmic fit of the fourth order cumulant,g(tn) ~shown in Fig. 8!, as a function of
the vibration amplitudex0.
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In summary, the time correlation functionC(tn) also
shows the logarithmic behavior found for the densityr(tn)
and, consistently, its power spectrumSC , has the same
power law behavior as forSr(v).

IV. CONCLUSIONS

In conclusion, our study of density fluctuations in th
present microscopic lattice model of vibrated granular me
presents a detailed picture of the phenomenon. We fo
that density fluctuations are of the same order of the m
sured average values and of the higher order cumulant. T
all follow the same kind of inverse logarithmic dynamics

FIG. 10. The density correlation function,C(tn) from MC data
as a function of the logarithm of the tap numbertn , for tapping
series with vibrations of amplitudex052.031024,5.031024,2.0
31023,5.031023, 1.031022,2.031022 ~from top to bottom! and
duration t537 ~the same as Fig. 1!. The continuous curves ar
inverse logarithmic fits. Inset: Asymptotic valuec` of the density
correlation functionC(tn), as a function of the vibration amplitud
x0.
bi

.
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the presence of vibration, as experimentally discovered in
compaction of real granular media undergoing a sequenc
taps@7#. As in the proximity of critical points, we typically
find power law behaviors in the limit of small vibration am
plitudes or durations. For what concerns the power spect
of density relaxations we observed, for low amplitude ta
ping sequences, several regions. In particular, at low am
tudes, a wide region with a nontrivial power law appea
between a low frequency zone with almost constant beha
and a more usual high frequency region originated by a s
time exponential-like relaxation. We also observed a cro
over region in vibrations amplitude~approximately located
between the amplitudesx1* and x2* ), where the quantitative
behavior of the above described laws changes. It is impor
to note that, being density relaxation logarithmic, our resu
may not apply in the real asymptotic regime, which also w
experiments may be not easily accessible. We have c
pared our results with experimental measures from Ref.@7#,
finding substantial agreement, and predictions about the
tailed behaviors found here are left for future experimen
investigations.

The key feature of the model consists of taking into a
count the role played in granular media by disorder and g
metric frustration in the motion and packing of grains. I
triguing are the connections that appeared with ot
materials in which geometrical disorder and frustration p
a crucial role as glassy systems@13,22,14#. As a matter of
fact, some phenomenological theories developed to exp
dynamic behaviors in granular media@8,19,14,15#, are close
in spirit to some approaches developed in the context of
glass transition@25#.
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