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Mario Nicodemi>? Antonio Coniglio}? and Hans J. Herrmanhn
'PMMH ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
2Dipartimento di Scienze Fisiche, Universita Napoli “Federico I1,” INFM and INFN Sezione di Napoli, Mostra d'Oltremare,
Padiglione 19, 80125 Napoli, Italy
3ICA 1, Universita Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
(Received 2 June 1997; revised manuscript received 4 Novembej 1998

This paper presents the study of density fluctuations in a model for vibrated granular media. Their micro-
scopic origin is shown to be linked to the microscopic disorder in grains packing. Varying vibrations amplitude
and duration, several regimes are found for density relaxation. Its power spectrum is well described by power
laws.[S1063-651X99)16905-9

PACS numbd(s): 81.05.Rm, 05.40-a, 45.05+x, 81.20.Ev

I. INTRODUCTION cies; then an intermediate region with a power law behavior
is found; and, at even higher frequencies, we observe a more
The problem of density fluctuations in vibrated granularusual behavior which corresponds to short time exponential-
media has large importance in many practical applicationgke relaxations. The intermediate region may be a wide non-
and opens questions from more fundamental points of viewfivial portion of the spectrum, but it seems to always present
[1,2]. Strong fluctuations are commonly observed in thesed finite upper cut off. Power law behaviors have been typi-
materials for instance in the measures of contact fopggs ~cally found in granular medil,2], and our general results
of stress in shearef4] or flowing [5] or compressed6] seem well consistent with the known experimental data for
granular media, during density compact{@x-9], in the den- ~ density compactioh7—9].
sity of granular systems flowing during the discharge from
bins or p_ipes[lO—lZ, an_d_actually their strength makes a Il. LATTICE MODEL
systematic study a nontrivial task. Here we try to show how
strong fluctuations in “dynamical” processes, as density As stated, the model introduced [ii9], which we study
compaction under taping, are related to microscopic mechaiere, was conceived to take into account the effects of dis-
nisms as geometric disorder and frustration present in gran@rder and geometrical frustration in particle rearrangements
lar packs. typically present in granular media. It is essentially a lattice
Several models have been proposed to describe the dgas whose particles have to fulfill local geometrical con-
namics of a dense granular material as nonlinear mastetraints, which, in the present version, are “quenched” on
equationg[8,13—15 or Monte Carlo simulations which in- the lattice(see[20] for a model without quenched disorder,
troduceab initio frustration due to the hard-core interaction where we expect behaviors similar to those discussed.here
between the graingl6-18 (see alsq1]). Recently a simple For the sake of clarity we briefly summarize its main fea-
microscopic model was introducéi9] to elucidate the role tures. The model consists of a system of particles diffusing
that disorder in particle arrangements, typical of granulaion a square latticéa three-dimensional version of the model
media, plays in such systems. This model, which can bés studied in Ref[21]). On sitei we setn;=1 if a particle is
mapped into an Ising spin glass, is a lattice gas whose papresent and 0 otherwise. Moreover, the particles are charac
ticles, subjected to gravity and vibrations, have to satisfyterized by an internal degree of freed@®=+1 (an Ising
during their motion the local geometrical constraints due tospin), describing local quantities, as particles shape orienta-
the nontrivial neighbors arrangement. Interestingly it showsion, which actually experience geometrical frustratiad].
highly nontrivial dynamic features, as logarithmic compac-S;=1 might correspond to a rodlike shaped grain whose
tion or segregatiof19], in strict correspondences with ex- elongation is directed along one lattice direction &heF
perimental facts about granular assemblies. In this context 1 to a grain oriented in the other direction.
we face the problem of a systematic analysis of density fluc- In real granular media, grains are typically frustrated in
tuations during tapping which may be compared with experitheir motion and packing, by several microscopic mecha-
mental observations of vibrated dry granular media in thenisms as, for instance, geometrical effects due to hard core
low amplitude regime. The model allows to sketch a micro-repulsion with their neighbors or friction phenomena. More-
scopic detailed picture of the phenomenon and to predicover, a high degree of disorder is typically present in the
several characteristic properties to be experimentally veripacks. In the present model we describe these facts by as-
fied. signing fixed random numbers;; = = 1, to the bonds of the
This analysis shows that density relaxation presents fludattice. The bond variables; schematically model the gen-
tuations of the same order of magnitude of the measuredral effects of the disorder of the environment and geometric
mean values. In particular the power spectrum of the densitfrustration present in granular systems due to spatial mis-
relaxations,S(w), presents several regions as a function ofmatch of grains shapes and arrangements disregarding the
the frequencyS(w) goes to a constant at very small frequen-actual mechanisms from which they arise. Our results are
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linked to these general aspects of the model and are esser
tially independent of their specific realizati¢see alsq19-—
21]). In the present model particles are subjected to the con-
straint to fit the local “geometrical” arrangement imposing
that whenever twoi(andj) are neighboring, their “orienta-
tion” must satisfy the mutual and the environmental geo-
metrical disposition according the following relation:
€;SS;=1. Particles react to the effects of the “quenched”
frustration imposed by the choice of tleg , which leads to
the unavoidable presence of empty sites. It is possible to give
a formulation of such a modgR2,23,19 in terms of an
Edwards-Anderson Ising spin glasslike Hamiltonjad].

We are interested in studying such a system when under-
going a dynamical processes in the presence of “external 10° 10"
vibrations” and “gravity.” So we define a dynamics based w
on the random diffusion of particles on a square lattice
whose diagonal is parallel to the direction of gravity, in such  FIG. 1. Power spectrun§,(w), of MC data for density relax-
a way as to preserve the above “geometrical” constraintsation as a function of the frequency numbey for sequences of
When just gravity is present, particles may just move down{a@ps of vibration amplitudex,=2.0x10"%, 5.0<10 %, 2.0
while in the presence of shaking they can also be pushed up¢10 % 5.0<107%, 1.0x1072,2.0x10 0.1 (from bottom to
Thus, the particles attempt a move upwards with probability©P) and durationr=37. The continuous curves are power law fits
P, and downward wittP,(P,+ P,=1). The move is made described |n.the textEq. (7)] whose parameters are shown in Fig.
only if the internal degrees of freedom satisfy the above con2: 'Nset: Static bulk density(t,) from the same MC data described
straint and if the place is empty. Similarly, their orientation (from bottom to top above as a function of tap numbky. The
S (the “spin”) may randomly flip if there is no violation of continuous curves are inverse Iogar_lthmlc fits, given in the[tEgt
constraints, and does not flip otherwise. In the absence (rg,g?\:ggoiiegigto2|nterpo|ate experimental data, whose parameters
vibrations, the presence of gravity imposBes=0. When o
vibrations are switched orR, becomes finite. The single
parameter that controls the dynamics and describes the vibr.
tions is the ratiox(t) =P,(t)/P(t). As described in more

?etsul |r; Refs-[ltg‘z??’fﬁ‘e [;eg]amete:( IS I”jl(iafj to an ‘(‘jef— the density in the lower 25% of the box. We repeat the
ective temperature, 8", of the systemB=—In(x), and is tapping sequence for different values of the tap amplityde

thus related to the adimensional experimental shaking amp“émd fixed durationr.
tudeI” (see[1)).

. . o v For this Monte Carlo experiment, which requires very
We aplopt, f_or our Monte Carlo ;l_mulatlons, a 45 t_||ted long computer time, we considered a system of siz& G0.
Iattlcg with periodic bogndary _C(_)ndmons along the horlzon'Our data are averaged over 640 differepntconfigurations to
tal axis(respect to gravityand rigid walls at bot?ﬁn;ﬂand top. produce highly reliable data. The draWbJack was that we were
Further results about three-dimensional syst show . S : i
the generality of our finding in two dimensions. After fixing unable to make simulations for very long tapping sequences:

S we generally fix to 100 the total number of taps in a se-
the random quenchee); on the bonds, a random initial par- quence. However, as explained below, we also made test

ticle configuration is prepared by randomly pouring particles ; o - .
) ) . runs with less good statistics but longer time sefm@®e or-
into the box from its top and then letting them fall down 9 9 (

. . ; ' der of magnitude mojeto verify that our results are valid
with the described dynamic%=0). (see also Fig. B A test of size effects was also performed,
where larger systems were studigg to size of 10& 200,

1. MONTE CARLO RESULTS see alsd19]). This analysis allows us to conclude that our
o . ) ] results are very robust to size effects. However, the phenom-
Our aim is the study of density fluctuations during com-enon of density relaxation is logarithmic tp; thus, gener-
paction in the presence of vibrations. As in real expenment%”y speaking, we cannot exclude that our analysiih t,

we consider dynamical processes gonsisting (_)f sequences 19;5 to 16) is not valid in the truly asymptotic time regime.
taps. A “tap” in a real experiment is the shaking of a con-

tainer filled with grains by vibrations of given duration and
amplitude. In our Monte Carlo simulations each tap is de-
fined by giving a finite value to the dynamic parameter To describe experimental observations about grain density
Specifically we fixx(t)=x,=const forte[0,7] and later compaction under a sequence of taps an inverse logarithmic
Xo=0. With this procedure the systems attains, after “shakdaw was actually proposed in Réf/]. In the present model,
ing,” a final “static” configuration that is defined by the data of density relaxation proved to satisfy the same law
criterion that during a fixed time, nothing changes any [19]. In the inset of Fig. 1 we show our Monte Carlo data for
longer. We fixed in our simulation, =330, much longer the density relaxation during a sequence of taps for several
than any other characteristic time in the syst@hx,=0). values of the vibration amplitude,. The superimposed fits
Time t is measured in such a way that one unit correspondare from the logarithmic law presented [iii], cast in the

to one single average update of all particles and spins of thillowing form:

lattice. We interpret as the duration of the vibrations argl
s their amplitude. After each tap we measure the static bulk
density of the systemp(t,)(t,, is the nth tap numbey, i.e.,

A. Density relaxation under tapping
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FIG. 2. Fit parameterp., and 7y for density relaxatior{data of
Fig. 1), from the inverse logarithmic law, given in the text, Ef)),
as a function of the tap vibration amplitudg. The behavior op.,
shows the appearance of three approximate rough regions separated
by x} ~10~2 andx} ~ 10~2. The characteristic time of logarithmic
relaxations,ro(Xp), can be described by two power laws.

FIG. 3. Static bulk density(t,) from our MC data as a function
of tap numbett,, for tapping sequences of fixed vibration ampli-
tude xq=5.0x 10 * and durationr=0.037,0.37,3.7,37,370from
bottom to top. The continuous curves are the quoted logarithmic
fits, whose parameters are shown in Fig. 4. In the inset we show the
corresponding power spectruanalogous to the spectrum of the
Here p.. is the final asymptotic density angl, its initial  data of Fig. } with the power law fits described in the text whose
measured value. Notice that one can fit the very long timearameters are shown in Fig. 4.
data of density compaction under tapping also with a
stretched exponential four parameter function, which, at high
Xg values performs as well as the above inverse logarithm.
However, with the logarithm one is able to fit the full set of | ... r,=0.79, ro=0.003 belowx* , r;=0.75, ry=0.001
data(not just long timegfor all the explored values ofj,.
We present here results for the fits of our data with @&.

on which we imposed the constraint that the fit function ters bv chanaing the tap “duration?. We simulated
passes at,=0 throughpy=0.739, i.e., the measured static rameters by changing the tap “duratior. Ve simulate

initial state density of our system obtained from the prepare(ﬁ""pplng sequences of 200 taps with fixeg=0.0005 andr
random starting configuratiofin which the particles were :0'037’0'37’3‘7’37'37.0' Th? data from t_hese sequences, av-
poured into the box according to the rules given aboWe graged over 328 c'onflguratlonsf, are dep'lcted in Fig. 3. We
found that for the sequences of our MC taps of fixed dura’tior{'mI again the logarithmic behavior given in E@), in which
7 and amplitudexy, the parametec of Eq. (1) is approxi- apprqua_telyp: 1.3. The oth_er two parameteys, gnd 7o,
mately equal te= 1.3 and independent o, in the explored are given in Fig. 4 as a function ef As above we find that
amplitude xoe[2.0x10 4,0.1] and duration ranger they are well described by power laws,
€[0.037,370. The phenomenological parametemay be
linked to a second typical time, other thag in the system.
The two parameters,, and, obtained by fitting with Eq.
(1) our MC data for sequences with fixed tag:37 and tap  with A=1.1x10* andy’ =0.9 in agreement with the previ-
“amplitude” xoe[2.0x10 4,1.0x10 1], are reported in ous value fory of Eq. (2) in the low vibration amplitudes
Fig. 2. Consistent with what was found experimentally inregion. As expected the characteristic timgediverges when
Ref. [7], and in agreement with some previous res[di8],  eitherx,—0 or 7—0. For small vibration amplitudes or du-
the characteristic timeg diverges when the vibrations am- rations, the asymptotic densip., increases withxy and 7.
plitude goes to zero with a power law X3 (at low vibration ~ As above, we fit the data approximately with
amplitudes and at fixed=37),

[p(tn) = pa1/(po—p=)=In(c)/In(t, /7o +C). ()

pe(Xg) =T 1+Tl0g(Xo), (3

betweenx} andx; , andr,=0.77,r,=0.002 above .
We also analyzed the dependence of these laws and pa-

o(7)=(7IA) "7, (4)

o(T)=Tr3+r5log(7), 5
(o) = (X0 /X) 7. @ p=(T)=r3+rlog(7) )
In the very low amplitude region the exponentjis0.9 and with r5=0.75,1,=0.003.
X=0.4, but the data show a crossover 45=0.6 and X
=1.8 abovex}~10 2. As a function of the effective tem-
perature 831, 7o should then follow an Arrhenius law. The A further characterization of our time series for density
other parametep,. shows a more complex behavior with.  relaxation is obtained by studying their spectral properties
Approximately three rough regimes seem to appear chara@and fluctuations. As usual, we define the power spectrum
terized by two typical amplitude values} andx}~103. S,(w) of our density sequencegt,) (with t,e{0,T}, where
A possible approximate fit in these regions of intermediateTl is the total number of taps, which in our case is typically
values ofxg is T=100,1000), as

B. Power spectrum of density relaxation
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FIG. 5. Lower figures: fit parametelSy,wq,& of the density
FIG. 4. Lower figures: fit parameters of logarithmic lgw, and ~ SpectrunS,(w) in the low frequencies region(< w,=T/4, where
70, for density relaxation in the sequences of taps shown in Fig. 3 of =100 is the total number of taps in the sequeicas a function
fixed amplitude  x,=5.0x10"* and duration 7 of the vibration amplitude, at fixed =37 (r is the duration of a
=0.037,0.37,3.7,37,370, as a function of Upper figures: fit pa- single tap for the same data shown in Fig. 1. Superimposed curves
rametersSy, wo(£=1), for power law density spectrui8,(w) in are the power law fit described in the text. Upper figures: fit param-
the low frequencies region, as a function of the frequency numbegtersSy andK’ —1 for S (w) in the frequencies zone abowg.
w, for the same sequences described above. These behaviors are
similar to those found for the other kind of tap sequen@e®d  This law, whené=1, is the spectrum, via discrete Fourier
durationT and varying amplitude,) shown in Fig. 1. transform, of a standard exponential function.
For our fits we divided the data in two frequency regions.
2 Above a frequency,~ T/4 (actually w; is a function ofx;)

, (6) we always findé=1. This suggests that at very small tap
number density compaction follows a usual exponential-like
behavior as found in the model of R¢L7]. The parameters

wherew e{0,1,...T/2} is an integer. Sy andK — 1 of the fit with Eq.(7) of MC data in the region
Being that the density relaxation is approximately loga-@> w1, are reported in the top row of Fig. 5. We find that
rithmic, it is problematic to decide where one enters theabovex; they are almost independent xj.
asymptotic “stationary” regime. We thus study the spectral The behavior withé=1, at low vibration amplitude, ex-
properties of the full relaxation to compare it with experi- tends over the whole frequency region we reached, also
mental data. abovew,. However, the scenario changes above a vibrations
The typical appearance of the spectr@jfw) as a func- amplitude approximately equal t®} , where a low fre-
tion of w is shown in Fig. 1 for our series of taps of fixed quency portion of the spectrum appears in which the expo-
duration 7= 37 and the quoted values of “amplitudex;,  nent¢ is well below 1. The fit of this part of the spectrum
described at the beginning of Sec. Ill A. We approximatelybelow w; is still done with Eq.(7), and the fit parameters of
find the following regions: a saturation to a const&ptw) MC data are depicted in the bottom part of Fig. 5. The ob-
~9(0), as a‘white noise” behavior, at very small frequen- servations of the previous section about the power law be-
cies; then up to a frequenay; a power law with an even- havior of 7y as a function ok, suggest an analogous behav-
tually nontrivial exponeng<1, S,(w)~w ™ 2; and, for high  ior for the characteristic frequeney,= (K —1)? of Eq. (7).
frequencies, a more usual behavior corresponding to showe find two regimes as a function ofy, approximately
time exponential relaxations. Interesting is the behavior aseparated, as above, by the vakje Belowx3 ,
low vibration amplitude. Actually wher,— 0, we find also
below w4 thaté=1. So a frequency region is present whose 8
extensions are larger the smaligr where trivial power laws
are obsgrveq, corresponding, as stated, Fo a short timgitn =16 andY=0.4, and, above; K—1 is approxi-
exponential-like behavior. Moreover, the portion of the SPECately constant K—1~1.5x1073). The exponent¢ is

trum with £<1 always has a finite upper cutodf;, above o a1t 1 up toc* and then apparently decreases, as shown
which we findé=1. in Fig. 5

The spectrum from our MC density seriésr the same Al . . .
. ) o ) S0 Sy has approximately a power law behavior divided
amplitude range e [2.0x10™“,0.1] and durationr= 37 re in two regions separated by the same vaigie

ported aboveis depicted in Fig. 1. Our data may be gener-
ally well fitted by power laws as the following:

1 27
S,(0)= ‘f 2. p(tn>exp(%tnw)

wo(Xo)ZE(K_ 1)=(xe/Y)4,

So(X0) = (X0/2)?, €)

27w\ ] ¢

— — * ~
Sp(w)=SO[K—cos< - ) where §=0.9 andZ=0.41 belowx; andS;~0.01 constant

above.

@)
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o duration 7=0.037,0.37,3.7,37,370 and fixed amplitudg
10" N 3 107 =0.0005. The picture outlined above doesn’t change and the
;ﬁ}ga spectrum, described by E(), is reported in the inset of Fig.
10° e, Y ig_‘; 3. The parameters defined in E(f), depicted in Fig. 4,
& ™ 10% again seem to follow power laws,
= 10° 107
3 0 1 2 3 o
= ol : e wo(T)=K—1=(7/C)%, (10)
" —~ 1t
S . %:2»2 wherea’=0.5 andC=2.1x 1¢°, and
- 10° ¥ &
'S 10°? _ P
3 4 So(7)=(7/D)", (11
10 10 -
S where 8’ =1.4 andD=3.6x 10%. In the present case, work-
10* o3 o ? e T 10° 10! ing at very low amplitude and small durations of the taps, we

always find that the exponeitis approximately equal to 1.
At low x, we are unable to enter the zone of the power

FIG. 6. Inset(top righd: density relaxation power spectrum spectrum with<1.
S,(w) from experimental data recorded by Knigkttal. (see text As a consequence of the above results, wkgr-0 or
for several values of the adimensional tap amplituBe(I ~ 7—0, we expect that the power spectri8y(w) obeys the
=1.4,2.3,2.7, from bottom to topI’=a/qg is the ratio of the peak following trivial scaling relation with vibration amplitude,
accelerationa, of a tap tog=9.81 m/&, the gravitational accel- (or analogously withr):
eration. Continuous curves are fits with the power law, &,
quoted in the text, whose exponent is respectively S,(@;X0) =Xgfr(w/X§), (12
=0.87,0.77,0.79. Main frame: the above experimental data from
Knight et al. (crossesand our MC data shown in Fig. (circles wheref1(y) is a universal scaling function. This equation is,
about power spectrum of density relaxati®)(»), as a function of however, not expected to be valid in the low frequency re-
the frequency numbes, rescaled according to the function given in gions wheref may no longer be equal to 1.
the text, Eq(7). Inset(bottom-lef): Power spectrum of MC data on

(K-cos(2mw/T))*

density relaxatior§,(w) as a_funct_ion qf the frequenc_y number C. Density fluctuations
for sequences of taps with vibrations of amplitudg=>5.0 ) ) ) ]
%x1073,1.0<1072,1.0< 10" * and durationr=37. These MC se- We pass now to a brief discussion of higher moments of

quences are depicted to show the consistency with the results frofensity series measurements. Specifically we analyze the
the shorter sequencedsne order of magnitude lessvith better  relative density fluctuations(t,) around the measured mean
statistic shown in Fig. 1. value p(t,) and the fourth order cumulamj(t,) to extract

informations about its distribution. We study the quantities
We tested that our general results are not affected by thgndg defined as

duration of our time serie$ =100, by recording the same

behaviors for a longer tap sequence witk 1000 but lower (p?(tn)) —{p(tn))? v
statistics. The findings, reported in the inset in the bottom of o(ty)= 5 : (13

i ; i <p(tn)>
Fig. 6, confirm our previous results.

These general results are consistent with the experimental 4
data known to us. To compare our results with experiments, (t)==|3- (p*(tn)) (14)
we show in the top inset of Fig. 6 the spectr@(w) from 9t 2 (p?(ty))? ’
P {tn

experimental measurements made by Knighal. [7]. The

experimental data of Knighgt al. on grain density compac- where the averages run over the quoted 640 different realiza-

tion concern the measure taken at the bottom of a shaken bapons.

forI'=1.4,2.3,2.7, wher€' is the ratio of the peak accelera- Like the densityp, o also follows an inverse logarithmic

tion of a tap,a, to g=9.81 m/<, the gravitational accelera- |aw similar to the one given in Eq1),

tion (I'=a/g). To show the direct correspondence between

our MC data and experimental data, we report in the main o(ty)=o.—Adg/In(t,/7,+C), (15

frame of Fig. 6(as a single pictupethe spectrum from our

series at different vibration amplitudéshown in Fig. and  wherec is still fixed to 1.3. Our results are reported in Fig. 7

those from the measurements by Knigfital. [7] both res-  for the same series of valuesxy described above in Sec. IlI

caled according Eq(7). Each data set is rescaled with its A with 7=37. We note that the fluctuation are of the same

value of the fit parametef measured in the low frequency order of the density itself¢~1) and that they are stronger

region (the values of¢=0.87,0.77,0.79 for the quoted ex- and more persistent at lower vibration amplitudes. The times

perimental data are in the same range of our)Mte scal- 7, of Eq. (15) are, within a 10% error, equal to those found

ing seems to work well over several orders of magnitude ofor 7 in Eq. (1). Ac~0.28+0.02 is approximately constant.

the rescaled variable, except for the high frequency data ( Also the study ofc.., depicted in Fig. 7, hardly shows the

> w,), where both experimental measures and our MC havehree regions found for the parameters of Ef). This may

as explained above, a different exponént1l. be due to the poorer data quality we obtain for higher mo-
We repeated the same analysis for the sequences with tapents.
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FIG. 7. Relative density fluctuations from MC datg(t,,), as a FIG. 8. Fourth order cumulant of density fluctuations from MC

function of the logarithm of the tap numbsgy, for the same tapping data,g(t,), as a function of the logarithm of the tap numibgr for
series of Fig. 1 with vibrations of amplitude,=2.0x10"4,5.0 the same tapping series of Fig. 1 with vibrations of amplituge
X 1074, 2.0x107%,5.0<10°3, 1.0x1072,2.0x1072 (from top to ~ =2.0X107%, 5.0x10°%, 2.0x10°% 5.0<10°% 1.0x107% 2.0
bottom and durationr=37. The continuous curves are fits with the X 10~ (from bottom to top and durationr=37. The continuous
inverse logarithmic function described in the text. Inset: the estiCurves are inverse logarithmic fits.

mated asymptotic valueg.,, for density fluctuationso(t,), as

function of the vibration amplitudg. (p(ty)p(t))—{p(ty))?

. . C C(ty)= 2 7 (16)
The quality of our data is even poorer fgr which is (p“(t))—{p(ty))

depicted in Fig. 8 for the same series of valuesxgfde-

scribed above. Note the fine scale of the ordinage, As above, the time correlation functi@yt,) has an inverse
€[0.999 61,0.999 7B this implies that the fourth moment logarithmic behavior given, for instance, in E(.), again

of the distribution of measures is essentially equal to thevith c=1.3. In this case, of course, we have the additional
second. Also in this case a fit with E(.5) is reasonable, but constraint that the curves have to pass through f,atl.

the fit parameters fluctuate much more. However, the charoyr results for the quoted values x§ are reported in Fig.
acteristic times of the logarithmic fits show the same behav{g

for found above forry and 7, [actually the simple moments  Aiso now the times of this logarithmic relaxation are,
p(tn), p°(tn) and p*(t,) have all the same time scales \ithin a 10%, consistent with the corresponding values

These fit parameters are shown in Fig. 9. found for 7 i ; .
- . o in EQ. (1). In the inset of Fig. 10 we plot the
All these findings may be resumed by stating that the symptotic estimated value, of the correlation function

mean square fluctuations observed in the measure of densi ; .

are typigally of the same order of magnitude of the average (tn) for the stu'd|ed values ol [C%_l'mthW_C(tn)]' We
itself. The relative fluctuations are stronger at lower vibrationjust note that.. is well above zero in the full interval of,
amplitude. The fourth moment is of the same order of thestudied.

second. Moreover, their dependence on the tap numper  Consistent with the previous results, the power spectrum
follows the same inverse logarithmic law given, for the den-Sc(w) of the correlation functiorC(t,) shows a behavior

sity, in Eq.(1). very similar to that described above in some detailSgw)
_ _ _ [analogously foror(t,) andg(t,)]. Equation(7) seems to be
D. Density correlation function satisfied and its parameters approximately follow E@.
We have also recorded the density time correlation funcand(9) as a function of vibration amplitude,. The statistics
tion, C(t,)), defined as for Sc(t,) is worse than that fo§,, and the data less clear.
1.0015 0.0005 4
10
Loo1 0.0004
3
0.0003 10
81.0005 OD ©0
a0 4 0.0002 = 2
10
Lo @) 5 0,0001
D 10! Loo
0.9995 3 > 4 00 3 2 1 3 2~
10 10 10 10 10 10 10 10 10
X0 X0 X0

FIG. 9. The parameterg, , Ag, and 7, from the logarithmic fit of the fourth order cumulamgi(t,) (shown in Fig. 8, as a function of
the vibration amplitudex,.
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FIG. 10. The density correlation functio@(t,)) from MC data
as a function of the logarithm of the tap numhgr, for tapping
series with vibrations of amplitude,=2.0x10 4,5.0x 10 4,2.0
x1073,5.0x 10 3, 1.0x1072,2.0x 10 2 (from top to bottor and
duration 7= 37 (the same as Fig.)1 The continuous curves are
inverse logarithmic fits. Inset: Asymptotic valug of the density
correlation functionC(t,,), as a function of the vibration amplitude
Xo-

In summary, the time correlation functio@(t,) also
shows the logarithmic behavior found for the dengity,)
and, consistently, its power spectru8, has the same
power law behavior as fdg,(w).

IV. CONCLUSIONS

In conclusion, our study of density fluctuations in the

the presence of vibration, as experimentally discovered in the
compaction of real granular media undergoing a sequence of
taps[7]. As in the proximity of critical points, we typically
find power law behaviors in the limit of small vibration am-
plitudes or durations. For what concerns the power spectrum
of density relaxations we observed, for low amplitude tap-
ping sequences, several regions. In particular, at low ampli-
tudes, a wide region with a nontrivial power law appears
between a low frequency zone with almost constant behavior
and a more usual high frequency region originated by a short
time exponential-like relaxation. We also observed a cross-
over region in vibrations amplitudéapproximately located
between the amplitudes; andx3), where the quantitative
behavior of the above described laws changes. It is important
to note that, being density relaxation logarithmic, our results
may not apply in the real asymptotic regime, which also with
experiments may be not easily accessible. We have com-
pared our results with experimental measures from Raf.
finding substantial agreement, and predictions about the de-
tailed behaviors found here are left for future experimental
investigations.

The key feature of the model consists of taking into ac-
count the role played in granular media by disorder and geo-
metric frustration in the motion and packing of grains. In-
triguing are the connections that appeared with other
materials in which geometrical disorder and frustration play
a crucial role as glassy systerfis3,22,14. As a matter of
fact, some phenomenological theories developed to explain
dynamic behaviors in granular medig,19,14,15, are close
in spirit to some approaches developed in the context of the
glass transitiorf25].
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